Mechanical properties of carbon nanotubes/epoxy nanocomposites: Pre-curing, curing temperature, and cooling rate

Author:

Judawisastra Hermawan1,Harito Christian2ORCID,Anindyajati Dika1,Purnama Hengky1,Abdullah Akbar Hanif Dawam3

Affiliation:

1. Material Science and Engineering Research Group, Institut Teknologi Bandung, Bandung, Indonesia

2. Industrial Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia

3. Research Unit for Clean Technology, Indonesian Institute of Sciences, Jl. Cisitu Sangkuriang Bandung, West Java, Indonesia

Abstract

The effects of composite fabrication, such as pre-curing, curing temperature, and cooling rate, were studied. In this work, the pre-curing was defined as heat treatment of Multi-Walled Carbon Nanotubes (MWNCTs) with Diglycidyl Ether of Bisphenol A (DGEBA) epoxy resin. Acid purified MWCNTs were characterized by Raman spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR). The pre-curing facilitated bonding between MWCNTs and epoxy via the oxirane ring of DGEBA, which accelerated the curing process of epoxy and increased mechanical properties. The elevated curing temperature on the pre-cured sample further improved the composite’s mechanical properties by increasing interfacial bonding due to cross-linking. The rapid cooling using liquid nitrogen during pre-curing treatment prevented re-agglomeration of MWCNTs, showing smaller agglomerates and improving the mechanical properties. Agglomeration was characterized by scanning electron microscopy, while the bonding between MWCNTs and epoxy was examined by the length of fibre pull-out on the fracture surface. Tensile testing was deployed for mechanical properties characterization. The degree of cure was determined by FTIR and Differential Thermal Analysis (DTA).

Funder

Binus University

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3