Affiliation:
1. Ionic Materials Team, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Malaysia
Abstract
The present work highlights the contribution of ammonium sulfate (NH4)2SO4 as H+ carriers in alginate-based solid polymer electrolytes (SPEs) that were successfully prepared via a solution casting technique. The Fourier transform infrared analysis revealed that molecular interactions between the host polymer and the ionic dopant complexes occurred at the wavenumbers 3700–2500 cm−1, 1800–1500 cm−1, and 1200–900 cm−1. These regions corresponded to the O-H stretching, COO− and C-O-C, moieties of alginate, respectively, which coordinated with the H+ carrier from (NH4)2SO4. At ambient temperature, the optimum ionic conductivity was obtained at 3.01 × 10−5 S cm−1 for the sample containing 10 wt.% of (NH4)2SO4. The IR-deconvolution approach shows that the ionic conduction enhancement is governed by the ionic mobility and the diffusion coefficient of H+ carriers, and the findings show that the present biopolymer, which is an alginate-based SPEs system, has an excellent possibility to be used as electrolytes for application in electrochemical devices.
Funder
Ministry of Higher Education, Malaysia
Postgraduate Research Scheme
Subject
Materials Chemistry,Organic Chemistry,Polymers and Plastics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献