Ionic liquid-modified polyimide membranes with in-situ-grown polydopamine for separation of oil–water emulsions

Author:

Qi Peng1,Jia Hongge1ORCID,Wang Qingji2,Su Guiming3,Xu Shuangping1,Zhang Mingyu1,Qu Yanqing1,Pei Fuying1

Affiliation:

1. College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Heilongjiang province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, China

2. CNPC Research Institute Of Safety&Environment Technology, Beijing, China

3. Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, China

Abstract

Leakage of oily industrial waste is not only a serious environmental and ecological hazard but also poses a significant health risk to people. Membrane separation, which is cost-effective and efficient, is one of the best solutions for reducing pollution discharge through oil–water separation. In this study, polydopamine (PDA) was incorporated into electrostatically spun ionic liquid-capped polyimide (IL-PI) membranes through an in situ growth method; the membranes exhibited the strong adsorption properties of PDA. The polyimide fibers were hydrophilically modified with an IL, which contains several hydrophilic groups, and PDA. Adjusting the polymerization time resulted in the formation of a composite membrane, which could effectively separate oil–water emulsions. Scanning electron microscopy analysis showed that with an increase in the PDA coating time, the PDA content in and on the surface of the composite membrane fibers significantly increased. In addition, the surface contact angle of the membrane decreased from 72.87° to 12.06° with the addition of the PDA coating, while the wettability was significantly improved. The PDA-modified fibrous membranes showed good separation of the emulsified oil–water mixtures. The maximum membrane flux and separation efficiency achieved was 280 L·m−2·h−1and >99%, respectively. After 10 repeated cycles, the separation efficiency was maintained at >92%. This approach can be used for the design of future wastewater treatment solutions.

Funder

Key research and development guidance projects in Heilongjiang Province, China

Heilongjiang Provincial Leading Talent Echelon Infrastructure funds, China

Financial and facility support for this research came from the Fundamental Research Funds in Heilongjiang provincial universities

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3