Self-catalytic phthalonitrile polymer with improved processing performance and long-term thermal stability

Author:

Zhang Xinyang1ORCID,Wang Xinyang2,Zhang Shuo1,Wu Minjie1,Rong Jianxin1,Han Wenshuang1,Zhao Tao1,Yu Xiaoyan1,Zhang Qingxin1

Affiliation:

1. Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China

2. School of Chemical Engineering and Technology, Tianjin University, Tianjin, China

Abstract

Phthalonitrile monomer with alkyl, pyrimidine, and amino is successfully prepared by nucleophilic substitution. The monomer is cured by autocatalysis of active hydrogen in the amino group, in order to obtain polymers through different temperature procedures. The low melting point (96°C) and curing kinetics of the monomer are analyzed by DSC, which manifest a processing window of 163°C. With lower energy barriers to overcome, the apparent activation energy ( E a) is 59.6 kJ mol−1 after fitting and calculating, signifying that the monomers are easier to process into polymers. This study focuses on the usefulness of the polymer, especially the long-term thermal stability by the comparison of numerous commonly used polymers. The consequence demonstrates that the polymer could be used for long periods at 300°C, keeping weight loss within 5 wt.% for 6 h. The advantage of long-term usage at high temperatures has not been proved in previous works on phthalonitrile polymer. Moreover, the thermal and thermal-mechanical stability are examined through TGA and DMA. The results indicate preferable thermal properties, that the glass transition temperature is up to 400°C.

Funder

Natural Science Foundation of Hebei Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3