Enhanced dielectric properties and thermostability in polyimide composites with core-shell structured polyimide@BaTiO3 nanoparticles

Author:

Deng Wei12ORCID,Ren Guanguan1,Wang Wenqi1,Cui Weiwei1ORCID,Luo Wenjun3

Affiliation:

1. School of Material Science and Engineering, Harbin University of Science and Technology, Harbin, People’s Republic of China

2. Key Laboratory of Engineering Dielectric and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, People’s Republic of China

3. Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), Wuhan, People’s Republic of China

Abstract

Polymer composites with high dielectric constant and thermal stability have shown great potential applications in the fields relating to the energy storage. Herein, core-shell structured polyimide@BaTiO3 (PI@BT) nanoparticles were fabricated via in-situ polymerization of poly(amic acid) (PAA) and the following thermal imidization, then utilized as fillers to prepare PI composites. Increased dielectric constant with suppressed dielectric loss, and enhanced energy density as well as heat resistance were simultaneously realized due to the presence of PI shell between BT nanoparticles and PI matrix. The dielectric constant of PI@BT/PI composites with 55 wt% fillers increased to 15.0 at 100 Hz, while the dielectric loss kept at low value of 0.0034, companied by a high energy density of 1.32 J·cm−3, which was 2.09 times higher than the pristine PI. Moreover, the temperature at 10 wt% weight loss reached 619°C, demonstrating the excellent thermostability of PI@BT/PI composites. In addition, PI@BT/PI composites exhibited improved breakdown strength and toughness as compared with the BT/PI composites due to the well dispersion of PI@BT nanofillers and the improved interfacial interactions between nanofillers and polymer matrix. These results provide useful information for the structural design of high-temperature dielectric materials.

Funder

Outstanding Young Talents Project of Harbin University of Science and Technology

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3