Bio-based phthalonitrile resin derived from quercetin as a sustainable molecular scaffold: Synthesis, curing reaction and comparison with petroleum-based counterparts

Author:

Berrouane Abdelwahed1ORCID,Derradji Mehdi1ORCID,Khiari Karim1,Mehelli Oussama1ORCID,Abdous Slimane1,Habes Abdelmalek1,Liu Wenbin2ORCID,Khadraoui Azzedine3

Affiliation:

1. UER Procédés Energétiques, Ecole Militaire Polytechnique, Algiers, Algeria

2. Institute of Composite Materials, Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China

3. Centre de Recherche Scientifique Technique en Analyses Physico-chimiques (CRAPC), Algiers, Algeria

Abstract

Quercetin (Q), one of the most abundant molecules in nature, remains relatively unexplored in the realm of bio-based thermosets. In line with the pursuit of sustainability, we report the successful synthesis of a novel bio-based phthalonitrile (PN) monomer (Q-Ph) using Q. The synthesis involved a nitro displacement reaction with 4-nitrophthalonitrile (4-NPN). Confirmation of the monomer’s structure utilized hydrogen and carbon nuclear magnetic resonances (1H and 13C NMR), Fourier transform infrared spectra (FTIR), and elemental analysis. Curing characteristics were examined by differential scanning calorimetry (DSC), and polymerization was analyzed using FTIR. The resulting monomers showed a wide processing window and low melt viscosity via rheological analysis. Thermal and thermomechanical properties were assessed using dynamic mechanical analyzer (DMA) and thermogravimetric analysis (TGA), revealing lower curing and polymerization temperatures compared to petroleum-based counterparts. The synthesized resin achieved a high Tg exceeding 400°C, a char yield of 79% at 1000°C, and T5% and T10% values of 564 and 660°C, respectively. The Q-Ph polymer demonstrated superior performance, with evidence of an autocatalytic curing mechanism. These results highlight quercetin as a promising petrochemical replacement for the preparation of self-curable PN thermosets, especially for high-performance applications.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3