Effects of nitrile rubber and multi-walled carbon nanotubes on damage recovery and physical mechanical properties of carbon fiber–reinforced epoxy composites

Author:

Yang Yang1,Zhao Xiaojia2,Peng Guirong1,Liu Wenpei1

Affiliation:

1. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, People’s Republic of China

2. College of chemistry, chemical engineering and materials, Handan University, Handan, People’s Republic of China

Abstract

Carbon fiber–reinforced epoxy resin composites (CF/EP) modified with nitrile rubber (NBR) and multi-walled carbon nanotube (CNT) were prepared, and their shape memory behavior and physical mechanical properties were studied. NBR/CF/EP composite showed a relative lower bending strength than pure CF/EP composite, and a remarkable increase of bending strength was achieved for CNT/CF/EP composite. The bending strength of all samples increased after postcure process. All samples showed a similar glass transition temperature, but CNT/CF/EP composite could recover at lower temperature and faster speed, while NBR/CF/EP composite was just the opposite. During folding-recovery cycles, internal damage increased with folding times, which led to a general decrease in bending strength, storage modulus, and shape recovery ratio. The anomaly of slight increase in bending strength resulted from the further curing at high temperature during the folding-recovery cycles. Among the three kinds of samples, NBR/CF/EP composite showed the best folding-recovery precision, recovery repeatability, and recovery capability of bending strength, which was considered resulting from the various damage mechanisms. Compared with the cracks in the CNT/CF/EP composite, the rubber deformation and plastic deformation of the matrix of NBR/CF/EP composite prior to the occurrence of cracks were easier to recover during the inadvertent or intentional postcure process.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3