Affiliation:
1. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, People’s Republic of China
2. College of chemistry, chemical engineering and materials, Handan University, Handan, People’s Republic of China
Abstract
Carbon fiber–reinforced epoxy resin composites (CF/EP) modified with nitrile rubber (NBR) and multi-walled carbon nanotube (CNT) were prepared, and their shape memory behavior and physical mechanical properties were studied. NBR/CF/EP composite showed a relative lower bending strength than pure CF/EP composite, and a remarkable increase of bending strength was achieved for CNT/CF/EP composite. The bending strength of all samples increased after postcure process. All samples showed a similar glass transition temperature, but CNT/CF/EP composite could recover at lower temperature and faster speed, while NBR/CF/EP composite was just the opposite. During folding-recovery cycles, internal damage increased with folding times, which led to a general decrease in bending strength, storage modulus, and shape recovery ratio. The anomaly of slight increase in bending strength resulted from the further curing at high temperature during the folding-recovery cycles. Among the three kinds of samples, NBR/CF/EP composite showed the best folding-recovery precision, recovery repeatability, and recovery capability of bending strength, which was considered resulting from the various damage mechanisms. Compared with the cracks in the CNT/CF/EP composite, the rubber deformation and plastic deformation of the matrix of NBR/CF/EP composite prior to the occurrence of cracks were easier to recover during the inadvertent or intentional postcure process.
Subject
Materials Chemistry,Organic Chemistry,Polymers and Plastics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献