Fabrication and tribological behavior of MnO2/epoxy nanocomposites

Author:

Hussain Md Z1ORCID,Khan Sabah1

Affiliation:

1. Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India

Abstract

Tribology is the study of moving surfaces, and it has a variety of effects on our lives. From an economic point of view, wear is one of the most important aspects of an industry’s viability. Parts of the machine can wear out, and they need to be replaced. This is especially important for polymer-based materials. Therefore, it is important to reduce maintenance costs and improve machine reliability in a variety of engineering applications through proper material selection. The present investigation deals with the fabrication of manganese dioxide (MnO2)/epoxy nanocomposite and investigates its tribological properties. The MnO2/epoxy nanocomposites were fabricated via a solution mixing technique. The phase identification and surface morphology of the sample was examined by X-ray diffractometer and field emission scanning electron microscope, respectively. The mass density, micro-hardness, and specific wear rate data of samples revealed that the mass density, micro-hardness, and wear resistance of the samples increased with the addition of MnO2 in the epoxy matrix. The nanocomposite sample containing 0.5 wt. % MnO2 loading in the epoxy matrix shows higher density, micro-hardness, and wear resistance compared to other samples. The result also shows that with the addition of MnO2 in the epoxy matrix, the coefficient of friction of the samples is increased. The percentage reduction in specific wear rate due to the addition of 0.5 wt. % MnO2 in neat epoxy is 68.10%, whereas the percentage increase in the coefficient of friction is 19.30%. The results of the analysis of variance show the effect of adding wt. % of MnO2 in the epoxy matrix is significant in the tribological responses. The worn surface analysis shows that the fatigue wear mode seems to be the dominating mode of wear for all samples as compared to the other modes of wear. The properties of MnO2/epoxy nanocomposite data revealed that the developed material may be used in the automotive industry as a structural material, fabrication of snow sled, ball bearing housing, or plastic gear materials with adequate lubrication.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3