Impact of charge carrier transport properties on conductivity-temperature dependence of gellan gum-LiCF3SO3 biopolymer electrolyte

Author:

Abdul Aziz N.A12,Tarmizi E.Z.M12ORCID,Razak C.S.C2,Noor I.M12ORCID

Affiliation:

1. Physics Division, Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2. Physics Department, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor,Malaysia

Abstract

Charge carrier density, mobility and diffusivity are three important transport properties in determining the ionic conductivity as well as the performance of solid polymer electrolyte. In this work, biopolymer electrolytes samples were prepared using the solution casting method by complexing gellan gum with different concentrations of lithium trifluoromethanesulfonate (3–15 wt.%). The values of charge carrier concentration, mobility, and diffusivity for electrolyte samples were estimated by fitting the Nyquist plot with an equation developed based on electrical impedance spectroscopy. At room temperature, the optimum electrolyte conductivity is 1.29×10−8 Scm−1 at 6 wt.% salt concentration. This result was supported by the highest percentage of free ions, 31.45%, observed in the FTIR method. As the temperature increases, the ionic conductivity increases to the optimum value before dropping. The highest conductivity of each sample was obtained at different temperatures (80°C–90°C) using the impedance method, whereas the percentage area of free ions was highest at 80°C for all samples with FTIR analysis. Overall, the ionic conductivity of this system has been dominated by the carrier charge density. Results suggest that, under these experimental conditions, electrical impedance spectroscopy is suitable for evaluating the charge transport properties at low temperatures.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3