Effects of interface bonding on the corona resistance of the polyimide/nano-Al2O3 three-layer composite films

Author:

Ma Xinyu1,Liu Lizhu12,He Hongju1,Weng Ling12

Affiliation:

1. School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, China.

2. Key Laboratory of Engineering Dielectric and Its Application, Harbin University of Science and Technology, Ministry of Education, Harbin, China

Abstract

Polyimides (PIs) are widely used in many fields including aerospace and microelectronics. Due to their poor corona resistance, their practical applications were limited, especially in the field of variable frequency motors. In this study, we have achieved for the first time to increase the corona resistance by controlling the preparation process of the three-layered PI composite. A series of PI/nano-Al2O3 composite films with novel three-layer structure were prepared by in situ polymerization employing pyromellitic dianhydride and 4,4-diaminodiphenyl as raw material, N, N-dimethylacetamide as solvent, and doping of nano-Al2O3. The first layer of the PI/Al2O3 composite film was characterized by Fourier transform infrared spectroscopy, and the imidization rate under different processes was calculated. The interface structures and bonding conditions of the composite films were characterized by scanning electron microscope, and the surface morphologies of the composite films treated by different corona-resistance times were investigated. X-ray diffraction analysis was also used to study the effect of nano-Al2O3 on PIs with different imidization ratios. The corona-resistance time and breakdown field strength of the composite films prepared by different processes were also tested. The results indicated that the combination of the three-layer composite film and the corona-resistance abilities of the composite membrane surface was enhanced by increasing the imidization rate. Meanwhile, the corona-resistance time and the electrical breakdown strength of composite films were also improved by increasing the imidization rate.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3