Fabrication of high performance polyimide fibers by dry-jet wet spinning technology

Author:

Wang Xiaowei1ORCID,Zhang Mengying2,Niu Hongqing1ORCID,Wu Dezhen1

Affiliation:

1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China

2. Jiangsu Shino New Materials Technology Co., Ltd, Changzhou, China

Abstract

High-performance co-polyimide (co-PI) fibers derived from 3,3`4,4`-biphenyldianhydride (BPDA), p-phenylenediamine (p-PDA) and 2-(4-aminophenyl)-5-amino-benzimidazole (BIA) were prepared via the wet spinning and dry-jet wet spinning method, respectively. The distinctions between wet spinning and dry-jet wet spinning processes on the structures and properties of co-PI fibers were systematically investigated. The co-PI fibers prepared by dry-jet wet spinning exhibited smoother surface morphology and higher mechanical properties than those of co-PI prepared by wet spinning. Wide-angle X-ray diffraction (WAXD) results showed that the co-PI fibers prepared by dry-jet wet spinning exhibited highly oriented structure along the fiber direction along with a low degree of lateral packing order in the transverse direction. Small-angle X-ray scattering (SAXS) revealed that the radius, length, misorientation and internal surface roughness of the microvoids in the co-PI fibers prepared by the dry-jet wet spinning are lower than those in co-PI fibers prepared by wet spinning. Moreover, the effect of air layer height, as well as the heat treatment on the structure and properties of fibers during the dry-jet wet spinning process, was also studied. The tensile strength and modulus of co-PI fibers prepared by dry-jet wet spinning reached 2.72 GPa and 114.29 GPa, respectively, with an air layer height of 10 mm and a heat stretching temperature of 440°C.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3