Design and synthesis of high heat-resistant, soluble, and hydrophobic fluorinated polyimides containing pyridine and trifluoromethylthiophenyl units

Author:

Huang Xiaohua1,Li Hua1,Liu Chanjuan1,Wei Chun1

Affiliation:

1. Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, and School of Material Science and Engineering, Guilin University of Technology, Guilin, People’s Republic of China

Abstract

In this study, a novel diamine monomer, 4-(4-trifluoromethylthiophenyl)-2,6-bis(4-aminophenyl)pyridine (FTPAP) was synthesized through two-step reaction from 4-trifluoromethylthiobenzaldehyde and 4-nitroacetophenone as raw materials, and then the structure of FTPAP was characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance, and mass spectrometry. A series of fluorinated polyimides were prepared from FTPAP with five commercial dianhydrides, namely, pyromellitic dianhydride, biphenyl tetracarboxylic dianhydride, oxydiphtahalic anhydride, benzophenone tetracarboxylic dianhydride, and 4,4′-(hexafluoroisopropylidene) diphthalic anhydride. The structure and performance of the fluorinated polymers were fully characterized by FTIR, differential scanning calorimetry, thermogravimetric analysis, and wide-angle X-ray diffraction (WAXD). The inherent viscosity of polymers ranged from 0.41 to 1.45 dL g−1. These polymers displayed good solubility in polar aprotic solvents, such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, and N-methyl-2-pyrrolidone, at room temperature or on heating. Furthermore, they exhibited outstanding thermal stability with glass transition temperatures beyond 305°C, and the temperature of 10% weight loss was in the range of 514–573°C with more than 56% residue at 800°C under nitrogen. Moreover, they showed high optical transparency with the cutoff wavelengths in the range of 385–457 nm and excellent hydrophobic property with contact angle in the range of 82.8–97.6°. In addition, the results of WAXD indicated that all of the polymers presented amorphous structure.

Funder

Natural Science Foundation of Guangxi Province

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3