Affiliation:
1. Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, and School of Material Science and Engineering, Guilin University of Technology, Guilin, People’s Republic of China
Abstract
In this study, a novel diamine monomer, 4-(4-trifluoromethylthiophenyl)-2,6-bis(4-aminophenyl)pyridine (FTPAP) was synthesized through two-step reaction from 4-trifluoromethylthiobenzaldehyde and 4-nitroacetophenone as raw materials, and then the structure of FTPAP was characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance, and mass spectrometry. A series of fluorinated polyimides were prepared from FTPAP with five commercial dianhydrides, namely, pyromellitic dianhydride, biphenyl tetracarboxylic dianhydride, oxydiphtahalic anhydride, benzophenone tetracarboxylic dianhydride, and 4,4′-(hexafluoroisopropylidene) diphthalic anhydride. The structure and performance of the fluorinated polymers were fully characterized by FTIR, differential scanning calorimetry, thermogravimetric analysis, and wide-angle X-ray diffraction (WAXD). The inherent viscosity of polymers ranged from 0.41 to 1.45 dL g−1. These polymers displayed good solubility in polar aprotic solvents, such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, and N-methyl-2-pyrrolidone, at room temperature or on heating. Furthermore, they exhibited outstanding thermal stability with glass transition temperatures beyond 305°C, and the temperature of 10% weight loss was in the range of 514–573°C with more than 56% residue at 800°C under nitrogen. Moreover, they showed high optical transparency with the cutoff wavelengths in the range of 385–457 nm and excellent hydrophobic property with contact angle in the range of 82.8–97.6°. In addition, the results of WAXD indicated that all of the polymers presented amorphous structure.
Funder
Natural Science Foundation of Guangxi Province
Subject
Materials Chemistry,Organic Chemistry,Polymers and Plastics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献