Preparation and characterization of a novel benzoxazines/bismaleimide/2,2′-diallylbisphenol A blend with multiphase structures

Author:

Ning Yong12,Yao Zhengjun12,Zhou Jintang12,Cai Haishuo12

Affiliation:

1. College of Materials and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, People’s Republic of China

2. Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, Jiangsu, People’s Republic of China

Abstract

Novel benzoxazine (BOZ)/bismaleimide (BMI)/2,2′-diallylbisphenol A (BA), with a multiphase structure, was successfully prepared under the catalysis of methyl p-toluenesulfonate (PTSM) through reaction-induced phase separation. The curing reaction of BOZ with BMI and ring-opening polymerization of BOZ under the catalysis of PTSM were studied by Fourier transform-infrared spectroscopy and differential scanning calorimetry analyses, respectively. Mechanical measurements, thermogravimetric analysis, and microanalyses were conducted to assess the toughness and morphology of the composite. The reaction between BOZ and 4,4′-bismaleimidodiphenyl methane (BDM) occurs at a relatively high temperature. The ring-opening reaction of BOZ starts at a low temperature of 100°C because of the catalysis of PTSM. The BOZ/BDM/BA system with an appropriate amount of BOZ significantly improves the impact strength and flexural strength compared with those of the BA/BDM resin. The BOZ/BDM/BA system with PTSM also features high impact strength and flexural strength. Scanning electron microscopy images and energy-dispersive spectroscopy results show that BOZ-rich phase is dispersed in BDM-rich phase in the BOZ/BDM/BA system with PTSM. Thermogravimetric data show that the BOZ/BDM/BA blend with a multiphase structure exhibits superior thermal resistance to those of the BOZ/BDM/BA and BA/BDM resins. The formation mechanism of the ternary system under the catalysis of PTSM is elucidated with Gibbs free energy theory.

Publisher

SAGE Publications

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3