Affiliation:
1. Research Branch of Advanced Functional Materials, School of Microelectronic and Solid-State Electronic, High Temperature Resistant Polymers and Composites Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
Abstract
Allyl-functional phthalonitrile (DBPA-Ph) and bismaleimide (BMI) have been considered as advanced composite-matrix resins applied in various fields. In this work, self-promoted polymerization behavior and processability of DBPA-Ph/BMI system were investigated in detail. To further reveal the effect of BMI on the properties of DBPA-Ph/BMI system, the blends and the prepolymers of DBPA-Ph/BMI were prepared in different proportions. Their curing and rheological behaviors were investigated by differential scanning calorimetry and dynamic rheological analysis. The results further confirmed the possible reaction mechanisms and demonstrated that DBPA-Ph/BMI prepolymers exhibited good processability, which included wide processing window (approximately 75°C), low melting viscosity (<0.2 Pa·s), and better reactivity. The copolymers exhibited satisfactory thermal stabilities ( T5% > 421°C, char yield at 600°C >70%). Moreover, the DBPA-Ph/BMI/glass fiber composite laminates were prepared and the effect of the curing temperature and BMI content on mechanical properties and dielectric properties were also investigated. The results show that the composite laminates exhibit favorable mechanical properties and weak frequency dependence of dielectric properties over a wide frequency range. Above all, the research on DBPA-Ph/BMI system could expand its applications in industry, especially in the areas, which require high temperature resistance and excellent mechanical and dielectric properties.
Subject
Materials Chemistry,Organic Chemistry,Polymers and Plastics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献