Modeling and multi-objective optimization of abrasive water jet machining process of composite laminates using a hybrid approach based on neural networks and metaheuristic algorithm

Author:

Chaouch Faten12ORCID,Ben Khalifa Ated1ORCID,Zitoune Redouane23,Zidi Mondher1

Affiliation:

1. Laboratory of Mechanical Engineering, National Engineering School of Monastir (ENIM), University of Monastir, Monastir, Tunisia

2. Clément Ader Institute, UMR-CNRS 5312, “INSA, UPS, Mines Albi, ISAE,” University of Toulouse, Toulouse, France

3. National School of Technology, Algiers, Algeria

Abstract

Although the abrasive water jet (AWJ) has proven to be a suitable process for machining composite materials, it has some limitations related to dimensional inaccuracy and surface defects. As the performance of the AWJ process mainly depends on the machining parameters, an optimal selection of them is crucial to achieving an improved quality of cut. In this context, the present study reports an experimental investigation to assess the influence of AWJ machining parameters on kerf taper angle (θ) and surface roughness ( Ra) of E glass/Vinylester 411 resin laminates. The experiments are carried out using a full factorial design by varying the water pressure, traverse speed, abrasive flow rate, and standoff distance. A first-ever attempt is made in this paper to optimize the AWJ process using a hybrid approach combining artificial neural networks (ANNs) with a recently proposed metaheuristic algorithm known as multi-objective bonobo optimizer (MOBO). The results show that standoff distance and abrasive flow rate were the most significant control factors in influencing θ and Ra, respectively. The developed ANN models are capable to predict the output responses with high accuracy and the solutions from the Pareto front provide a sufficient performance with a trade-off between θ and Ra. The corresponding levels of the optimal process parameters are 430 g/min for the abrasive flow rate, the range of 140–180 mm/min for the traverse speed, 280 MPa for the pressure, and 1.5 mm for the standoff distance.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3