Suspended SiC particle deposition on plastic mold steel surfaces in powder-mixed electrical discharge machining

Author:

Ekmekci Bülent1,Ulusöz Fevzi1,Ekmekci Nihal1,Yaşar Hamidullah1

Affiliation:

1. Department of Mechanical Engineering, Bülent Ecevit University, Zonguldak, Turkey

Abstract

The discharge gap phenomena in powder-mixed electrical discharge machining are examined using SiC powder mixing in water dielectric liquid. Surface modifications on machined work materials are investigated by means of optical, scanning electron microscopy and energy-dispersive spectroscopy. The experimental studies revealed that the surface morphology drastically affected the additives as means of secondary discharges and particle migration from dielectric liquid. Such mechanisms do not occur randomly and indicate a robust dependency with respect to powder suspension concentration, pulse on duration and current. The influence on discharge transitivity with respect to suspended particle concentration is noted with pock shape development due to secondary discharges followed by an intermediate stage signifying a sudden increase in particle migration from the dielectric liquid. The particles decomposed on the surface at specific operational conditions demonstrating the possibility of methodical surface alloying using the process. Finally, the mechanisms involved were elaborated with respect to operational parameters and discussed based on the experimental results.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3