A complete methodology for identifying dynamics of heavy machine tool through operational modal analysis

Author:

Mao Xinyong1,Yan Ruizhi1,Cai Hui1,Li Bin12,Luo Bo1,He Songping3

Affiliation:

1. National Engineering Research Center for Numerical Control System, Huazhong University of Science and Technology (HUST), Wuhan, China

2. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China

3. National Engineering Research Center for Manufacturing Equipment Digitization, School of Mechanical Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China

Abstract

Heavy machine tool work under such high-load conditions that chatter vibrations are prone to occur, which significantly diminishes the machining efficiency and quality. Stability lobe diagrams are commonly used to select appropriate spindle speed and axial depth of cut to get rid of chatter and maximize the material removal rate. However, this needs precise identification of the dynamics of the entire machine tool structure, especially in the low-frequency range. Operational modal analysis has been the proven technique for estimating dynamic characteristics of machine tool structures in operation conditions. In this article, a complete methodology was presented for employing operational modal analysis for heavy machine tool in machining conditions. A random cutting exciting method originally presented by Minis is modified which generates pseudorandom impulse force to excite a heavy vertical lathe structure. And the excitation signal of random cutting force was modeled to analyze the effect of cutting parameters on energy and frequency band of the excitation. One operational modal analysis method, the pLSCF (referred to as PolyMAX) method, was employed to estimate modal parameters during machining. It was also observed in chatter tests that the operational modal analysis results are more accurate than the traditional impact test results in characterizing the dynamics of machine tool structure in machining.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3