Affiliation:
1. Department of Mechanical Engineering & Engineering Science, UNC Charlotte, Charlotte, NC, USA
2. Systems Integration Division, NIST, Gaithersburg, MD, USA
Abstract
Size is a fundamental descriptor of objects—it allows us to quantify “how big” objects are and to compare and classify objects based on this notion. In the world of International Organization for Standardization Geometrical Product Specification and Verification, size is defined much more narrowly: it is restricted to features of size, and the methods of inducing size values from an actual workpiece are strictly controlled. The release of ISO 14405-1:2010 has introduced a rich new set of size specification modifiers, which includes two-point and spherical local sizes, least squares, maximum inscribed and minimum circumscribed associations, as well as calculated diameters (inferred from the circumference, area, or volume of the feature of interest). Further modifiers allow the specification of statistics of local size measurements, such as maximum, minimum, range, average, and others. This article will present “size” as a fundamental engineering notion from several viewpoints and trace its evolution in engineering drawings. It will then discuss the implications of the use of the recently standardized size modifiers in engineering design and investigate the issues that may arise in the application and interpretation of these extensions to size.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference10 articles.
1. Siegel A. A historic review of the isoperimetric theorem in 2-D, and its place in elementary plane geometry, http://www.cs.nyu.edu/faculty/siegel/SCIAM.pdf
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献