Precision grinding of BK7 glasses using conditioned coarse-grained diamond wheel

Author:

Zhao Ling L1,Zhao Qing L1,Jin Guo W2,Kang Xiao J2,Xin Xiao W2

Affiliation:

1. Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, People’s Republic of China

2. Shanghai Machine Tool Works Ltd., Shanghai, People’s Republic of China

Abstract

For precision machining of large-sized optical elements, more attention is being paid to the ground surface quality, the processing costs and the machining efficiency. Besides the commonly used fine-grained diamond wheels, the coarse-grained diamond wheel is now also expected to be a promising tool with lower wheel wear rate and higher efficiency. However, conditioning of this kind of wheel is always a difficult issue to deal with. In this article, the efficient conditioning of the electroplated diamond wheel and precision grinding of BK7 glasses were investigated. Through the single diamond grit wear simulation, D3 steel was chosen as the conditioning tool. The worn diamond abrasive morphology and Raman spectroscopy analysis revealed the conditioning mechanism. Under different conditioning stages, the BK7 glasses were correspondingly ground exhibiting different surface integrity and grinding forces. The experimental results indicated that the wheel’s run-out error could be rapidly reduced to 5.8 µm because of the blend graphitization, passivation, diffusion and microcrushing of the diamond abrasives. The precision ground BK7 glasses could achieve a surface roughness of Ra < 20 nm and a subsurface crack depth around 2 µm, illustrating that the electroplated coarse-grained diamond wheel could be an alternative for precision grinding large-sized optical elements in terms of high accuracy, cost-effectiveness and high efficiency.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accurate modeling and controlling of weak stiffness grinding system dynamics with microstructured tools;Mechanical Systems and Signal Processing;2023-10

2. A novel reciprocating cluster magnetorheological polishing device: Design and investigation of removal model;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2022-11-17

3. Affecting factors, optimization, and suppression of grinding marks: a review;The International Journal of Advanced Manufacturing Technology;2021-05-03

4. Online force control of large optical grinding machine for brittle materials assisted by force prediction;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2019-04-24

5. Ultra-precision Machining of Hard and Brittle Materials with Coarse-Grained Grinding Wheels;Springer Tracts in Mechanical Engineering;2018-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3