A hybrid fabrication approach and profile error compensation for silicon aspheric optics

Author:

Sharma Rohit1,Mishra Vinod1,Khatri Neha1,Garg Harry1,Karar Vinod1

Affiliation:

1. Academy of Scientific & Innovative Research (AcSIR) and CSIR – Central Scientific Instruments Organisation, Chandigarh, India

Abstract

Aspheric optics is widely used for many optical applications due to their advantages, that is, light weight, cost-effectiveness and efficiency. There are many fabrication challenges which affect the quality of aspheric optics used for infrared-based applications. Diamond turning is one of the most suitable techniques for fabrication of infrared aspheric lens with high profile accuracies, due to its deterministic approach. However, for optics with large sag value, multiple machining cycles are required to make the best fit surface. Repeated machining cycles result in generation of inherent stresses leading to subsurface deformation and poor quality. In this study, hybrid approach of grinding and machining is proposed for fabrication of silicon infrared optics in large volume. The proposed approach results in reduced fabrication time and subsurface deformation with improved surface quality and tool life. The profile accuracy after compensation of profile error ( Pt) is 0.21 µm and surface roughness ( Ra) 10.5 nm is achieved.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3