A surface modeling method for product virtual assembly based on the root mean square of the regional residuals

Author:

Li Heng1ORCID,Qiu Lemiao1ORCID,Zhang Shuyou1,Tan Jianrong1,Wang Zili1,Liu Xiaojian1

Affiliation:

1. The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, P.R. China

Abstract

The micro-topographic quality of a product’s surface directly affects the performance of the virtual assembly. The computational precision of the fractal dimension has a significant effect on the accuracy of the virtual assembly model. To address the imprecision and large deviation of the calculation method under some conditions, a virtual product assembly surface modeling method is proposed in this article based on the root mean square of the area residuals. First, the fractal dimension of the surface is calculated using the regional residual root mean square (3R method). The feasibility of the 3R method is verified by comparing with the existing methods on isotropic and anisotropic surfaces. Second, the fractal dimension of a real part surface is obtained using the 3R method. According to the Weierstrass–Mandelbrot function, a partial surface model of the machined part is established. The surface contours, roughness, waviness, and flatness of the part are extracted by wavelet transform. Then, the digital surface model for virtual assembly with the same profile parameters is generated by reconstructing the surface contours of the actual parts. Finally, the method proposed by taking the virtual assembly of a VTM200/F5 turn-milling composite machining center guideway is verified in this article.

Funder

National Natural Science Foundation of China

zhejiang university

Natural Science Foundation of Zhejiang Province

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3