Finite element method based modeling of cutting forces and cutting temperature in micro-milling LF21

Author:

Lu Xiaohong1ORCID,Chen Ying1,Cong Chen1ORCID,Wang Kaidong1,Liang Steven Y.2

Affiliation:

1. State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, People’s Republic of China

2. The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Abstract

The demands for aluminum alloy LF21 micro precision parts are increasing in the fields of aerospace, high-tech electronic products, and the other fields. Micro-milling is an effective technology for machining small LF21 precision parts. Cutting forces and temperature are crucial factors in micro-milling process, directly affect tool vibration, tool wear, and surface quality of the workpiece, and even result in large deformation of the tool and workpiece. Direct measurement of cutting forces during micro-milling requires high-precision and expensive instruments. Moreover, due to the small cutting area in micro-milling, it is challenging to achieve accurate measurements of cutting area temperature. Therefore, accurate prediction of cutting forces and temperature in micro-milling is urgent and challenging. Nowadays, there are few studies on prediction of cutting forces in micro-milling LF21. The study on prediction of temperature in micro-milling LF21 is still blank. To solve the above problems, this paper proposes a finite element method based on modeling for prediction of cutting forces and temperature in micro-milling LF21. ABAQUS software is adopted. First, the geometry models of the micro-milling tool and workpiece are established. Then, the assembly and mesh division of the established models are completed. Johnson-Cook constitutive model and Johnson-Cook damage criteria are used to describe the material constitutive relationship and chip separation criteria, respectively. The suitable tool-workpiece friction models are determined. Finally, the simulation of the micro-milling LF21 process is achieved. Experiments of micro-milling LF21 are conducted and the cutting forces are measured using the dynamometer. The validity of the built process simulation model and the correctness of the cutting force prediction results are verified by the comparison of experiment and simulation cutting forces. Then, the prediction of temperature is achieved based on the verified process simulation model of micro-milling LF21.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3