A systematic approach for an accuracy level using rapid prototyping technologies

Author:

Relvas Carlos1,Ramos António1,Completo António1,Simões José A1

Affiliation:

1. University of Aveiro, Portugal

Abstract

Nowadays there has emerged a series of rapid prototyping processes with great potential, and designers and engineers need to know the accuracy performance of these processes to compare and select the best solution. There is a significant lack of published data related to rapid prototyping processes and feature accuracy. This research was conducted to minimize this gap and provide much needed accuracy in terms of dimensional and geometric information. The methodology includes the summarization of previous studies and definition of a benchmarking part that is composed of elementary shapes representative of different features most likely to be found in a final product. The benchmarking part was controlled in terms of dimensional accuracy, geometric precision and freeform deviation. The sources of errors controlled by the final user were analysed, like Standard Tessellation Language (STL) file format resolution and build direction. Four custom rapid prototyping processes have been used and compared: stereolithography, selective laser sintering, fused deposition modelling and three-dimensional printer. Computer numerically controlled machining has been used as an alternative prototyping process in this study as a standard to compare costs and accuracy. This work assessed measures that can be used to quantify the accuracy performance for a given part so that the choices for prototyping can be made based on scientific knowledge and best working practices. These results are very useful for designing products to be prototyped or manufactured through direct methods. The results can be used to improve the functionality of prototypes and the decision process through the best systematic approach.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3