Optimizing the contributing electro-erosive discharge parameters for reducing the electrode wear and geometric dimensional deviation in EDM of Ti-based superalloy

Author:

Ishfaq Kashif1ORCID,Sana Muhammad1ORCID,Kumar M Saravana2ORCID,Ahmed Inzamam1ORCID,Yang Che-Hua2

Affiliation:

1. Department of Industrial and Manufacturing Engineering, University of Engineering and Technology, Lahore, Punjab, Pakistan

2. Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei

Abstract

The low thermal conductivity, the small magnitude of modulus of elasticity, and the high chemical reactivity of Ti-6Al-4V make it difficult to machine this material using traditional processes. The intended requirements for the applications of the said alloy, like in biomedical and aerospace, further complicate its processing. Thereof, electric discharge machining (EDM) opted for this alloy. However, intrinsic issues of EDM, that is, electrode wear rate (EWR) and dimensional overcuts, restricted its utilization. Therefore, the potential of three powder-based additives and dielectric fluids against different electrode materials has been deeply envisaged to address the abovementioned issues. Because the choice of best dielectric has a direct bearing on heat input to the electrode which influences the melting/vaporization of the tool wear of the electrode. It is worth mentioning that these concerns have not been discussed so far in such a broad spectrum. Taguchi’s experimental design is used for experimentation. The results show that transformer oil performance is best rated compared to other dielectrics. Overall, the reduction in tool wear rate and overcut obtained with transformer oil is 21.3% and 21.4%, respectively, in contrast to the other dielectrics. The electrode of Cu outperforms for yielding the smaller value of overcut and tool wear rate. In the case of micro-additives, alumina has proved its potential for lowering the electrode wear rate. Deep and wide craters of a depth of 150 µm have been observed by using the brass electrode in kerosene oil, whereas the small and shallow craters of 38 µm depth have been encountered using the Cu electrode in the presence of transformer oil.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3