Probabilistic investigation of geometric responses in Wire EDM machined complex-shaped profile: A machine learning based approach

Author:

Saha Subhankar1ORCID,Kumar Gupta Kritesh1ORCID,Ranjan Maity Saikat1ORCID,Dey Sudip1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar, Assam, India

Abstract

Wire electric discharge machining (WEDM) has gained tremendous market share due to its potential to create complex profiles and ease in machining exotic materials. The inherent problem of wire lag, however, has a significant impact on the accuracy and precision of complex profiles in WEDM. Furthermore, if parametric uncertainties are not taken into account during machining of complex profiles, problems like geometrical inaccuracy and imprecision are likely to worsen. Hence, in the present study, we focused on the role of parametric uncertainties on geometrical parameters such as corner error (CE) and undercut (UC) of complicated profile. In this regard, the machine learning (ML) driven framework is proposed, wherein the Gaussian process regression model is integrated with the experimental responses gathered from the WEDM. The sample-space to train and validate the ML model is constructed by performing the WEDM for the experimental plan, which is designed on the basis of face-centered central composite design. The constructed ML model is rigorously tested and validated to ensure its predictive accuracy. The ML-based WEDM framework is further extended to perform data-driven uncertainty quantification and sensitivity analysis to reveal the likelihood of variations in geometrical precision due to inherent parametric uncertainties. The constructed model is further deployed for the data-driven sensitivity analysis and to reveal the probabilistic behavior of responses in the presence of parametric uncertainties. The results of this study will help to develop and expand the WEDM robust control technique.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3