Die-less hydroforming of multi-lobe tubular structures

Author:

Hummel Steve1,Ngaile Gracious1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA

Abstract

The process capability of die-less hydroforming for producing tubular structures of complex geometries was investigated. Multi-lobe tubular structures were chosen for this study as they are capable of carrying higher loads than normal tubes of the same weight. The forming characteristics of three variants of tubular geometry with longitudinal lobes, circumferential lobes, and helical lobes were studied through numerical analysis. The parameters that were investigated were tube wall thickness, tube diameter, tube length-to-diameter ratio, pressure loading paths, and lobe-forming patterns. The finite element analysis showed that the length of the tube does not influence the lobe formation for all three tube variants. The finite element analysis results also demonstrated that lobe wall thinning varies linearly with hydroforming pressure for all multi-lobe tube patterns studied. The strength-to-weight benefit of the tubular structures was also verified through finite element analysis for annealed stainless steel tube sample of 200 mm length, 40 mm diameter, and 2 mm wall thickness. The longitudinal lobed geometry, circumferential lobed geometry, and the helical lobed geometry all were able to carry significantly larger loads as compared to a blank tube of the same mass under compressive, flexural, and torsional loading conditions. To test the viability of the die-less hydroforming process, a longitudinal lobed tubular structure was fabricated and formed. The results from this study indicate that a die-less hydroforming manufacturing process is viable and capable of producing strong, lightweight parts of complex geometries. Besides being capable of producing complex tubular structures, the costs associated with die-less hydroforming are significantly lower due to the absence of a press and dies. However, preparation of tubular blanks requires reliable weld seams and rolling operations.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of dieless hydroforming process for manufacturing of variable cross section tubular structures;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-05-21

2. Investigations on clamping effects with Die-Less-Hydroforming-Structures;PAMM;2015-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3