Study on machinability of three-step drill in drilling Ti6Al4V

Author:

Chen Guoqing,Wu ShujingORCID,Wang DazhongORCID,Dai Wenqing1

Affiliation:

1. Shanghai University of Engineering Science, Shanghai, China

Abstract

As the research progresses, titanium alloy materials have more applications in aerospace and other fields. However, problems such as chip winding and serious tool wear are easy to occur in the machining process. In this research, the three-step drill has changed the main cutting-edge structure, which is more conducive to chip breakage. Firstly, the drilling force of the three-step drill bit is analyzed, and the alternating stress that makes the chip thickness change is obtained by the cutting-edge structure of the three-step drill bit. The simulation and experiment are verified by each other, and the feasibility of three-step drilling to improve the processing quality is obtained. The results show that the improved drill has good chip breaking performance, low thrust force, and better machining performance compared with the twist drill. In addition, the improved drill can obtain a more complete inner wall of the hole and reasonably improve the surface quality. Through experiments, it is found that changing cutting parameters such as feed rate has different effects on chip thickness, thrust and tool wear. It was found that the drilling force was reduced by drilling Ti6Al4V material with the three-step drill. Moreover, the three-step drill can produce smaller chip thicknesses and make the chip more prone to breakage when compared with the twist drill. The high wear of three-step drill bits can also be better weakened by coating materials.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3