Inline measurement strategy for additive manufacturing

Author:

Bordron Matthias1,Mehdi-Souzani Charyar1ORCID,Bruneau Olivier1

Affiliation:

1. Lurpa, ENS Paris-Saclay, Université Paris-Sud, Université Paris 13, Université Sorbonne Paris Cité, Université Paris-Saclay, Cachan, France

Abstract

Additive manufacturing takes a growing place in industry tanks to its ability to create free-form parts with internal complex shape. Yet, the quality of the final surfaces of the additive manufacturing parts is still a challenge since it doesn’t reach the required level for final use. To address this issue, it is necessary to measure the form and dimension deviation in order to plan post-process operations to be considerate. Moreover in a context of industry 4.0, this measurement step should be fully integrated into the manufacturing line as close as possible to the additive manufacturing process and post-process. We introduce in this article an inline measurement solution based on a robot combined with a laser sensor. Robot allows reaching most of the orientation and positions necessary to digitize complex parts in a short time. The use of robot for digitizing is already addressed but not for metrological applications. Robots are perfectly designed for velocity, ability and robustness but their poor positioning accuracy is not compatible with measuring requirements. The strategy adopted in this article is to provide an algorithm to generate path planning for digitizing additive manufacturing parts at a given quality of the resulting cloud of points. After a discussion about the geometric and elastic model of the robot to identify the one that answers the quality requirements, the performances of the robot are evaluated. Thus, several performances maps are introduced to characterize the behavior of the robot in its working volume. The qualification of the digitizing sensor is also performed to identify relation between digitizing parameters and the quality of final cloud of points. Using data resulting from the qualifications of sensor and robot and the parts CAD model, the algorithm allows generating path planning to ensure the final quality necessary to measure the shape deviation.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3