Multi-objective optimization of loading path for sheet hydroforming of tank bottom

Author:

Zhang Zaifang1ORCID,Zhou Liang1,Xu Feng1,Sun Xiwu2,Zhang Zhichao2

Affiliation:

1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China

2. Shanghai Aerospace Equipments Manufacture Co. LTD, Shanghai, China

Abstract

As a critical component of the propellant tank, the tank bottom is subjected to complex loads such as internal pressure and vibration and has high requirements for structural load-bearing capacity. Hydroforming deep drawing is one of the techniques for the integral forming of the tank bottom. As the tank bottom is a large-size thin-walled structure, defects such as cracks and wrinkles are prone to occur during the hydroforming deep drawing process. Aiming at reducing these defects, the hydraulic pressure loading path and blank holder force loading path of the hydroforming deep drawing process are studied, and a multi-objective optimization method is proposed to improve the surface accuracy and thickness distribution uniformity of the tank bottom. The complex loading path curve optimization problem is transformed into a functional relationship between hydraulic pressure and blank holder force with time. The hydraulic pressure and blank holder force at each time node are used as design variables, and the maximum wall thickness reduction rate, rupture trend factor, wrinkle height, and wrinkle trend factor are used as optimization targets. The radial basis function (RBF) neural network is used to establish the approximate model between the loading path and the optimization target, and the multi-objective particle swarm optimization (MOPSO) algorithm is used to optimize the solution. Taking the hemispherical tank bottom as an example, the optimal hydraulic pressure loading path and blank holder force loading path are obtained, and the quality of the formed part is improved.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3