Investigation on multi-body dynamics based approach to the toolpath generation for ultraprecision machining of freeform surfaces

Author:

Khaghani Ali1ORCID,Cheng Kai1

Affiliation:

1. Department of Mechanical and Aerospace Engineering (MAE), Brunel University, London, UK

Abstract

This article presents an innovative approach to toolpath generation for ultraprecision machining of freeform optic surfaces based on the principle of Automatic Dynamics Analysis of Mechanical Systems. As components with freeform surfaces often have non-rotational symmetry, there are potential challenges facing their ultraprecision machining through single-point diamond turning, such as the projected points in complex large sag surfaces, which likely find it difficult to communicate with the control system and, thus, do not perform successfully. In ultraprecision machining, to achieve the highest performance in freeform surface resolution, the factors of dynamics, material and mechanical stiffness, frictions, tooling and accuracy of the servo component should be considered. The investigation is focused on an integrated approach and the associated scientific understanding of precision engineering design, ultraprecision machining and metrology of freeform surfaces as well as their application perspective. In this approach, the toolpath for very complex freeform surfaces can be generated using the Newton–Raphson method to solve the kinematics and dynamics equations of motion. The effect of friction and contact force are also investigated for accurate toolpath curve generation. Moreover, the Gear stiff (GSTIFF)/ Wielenga stiff (WSTIFF) integrator for solving the non-linear equations of motion is employed, and the result shows the time step size, playing a critical role in generating toolpath curves with a higher accuracy and resolution.

Funder

brunel university london

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generation of cubic Hermite spline-based trochoidal milling toolpath by introducing a coefficient factor in machining curved slots;Precision Engineering;2024-10

2. A novel tool path planning method for 5-axis single-point diamond turning;Journal of Manufacturing Processes;2024-08

3. Design and analysis methods for aerostatic bearings: The past, the present, and the future;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2024-06-02

4. Ultra-precision machining of optics;Comprehensive Materials Processing;2024

5. Investigation of surface imperfection in freeform optics with high-order XY polynomial design;The International Journal of Advanced Manufacturing Technology;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3