The simulation of microstructural evolutions in friction stir additive manufacturing

Author:

Zhang Z1ORCID,Zhou HS1,Tan ZJ12,Kong DS1,Wang YF1

Affiliation:

1. State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China

2. National Key Laboratory of Aerospace Flight Technology, Xiongan, China

Abstract

Both recrystallization and solid state phase transformation take key role for the determination of final mechanical properties in friction stir additive manufacturing (FSAM) of titanium alloy. Monte Carlo model is developed to simulate the microstructural changes and a two scale strategy is used to simulate both the recrystallization and the solid state phase transformation in FSAM of duplex titanium alloy. Results indicate that the selection of the building direction can lead to different temperature variations in FSAM due to the different heat accumulations. Lower temperature leads to lower cooling rate in FSAM. This is the reason that the volume fraction of α phase is decreased when the process temperature is decreased. Higher temperature leads to the formation of bigger grains when the rotating speed is increased or the transverse speed is decreased.

Funder

National Key Research and Development Program of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The fabrication of brass reinforced aluminum matrix composites by FSW;Journal of Materials Research and Technology;2024-07

2. Cooling-assist friction stir welding: A case study on AA6068 aluminum alloy and copper joint;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2023-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3