An accurate cutting tool wear prediction method under different cutting conditions based on continual learning

Author:

Hua Jiaqi1,Li Yingguang1ORCID,Mou Wenping12,Liu Changqing1

Affiliation:

1. National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. AVIC Chengdu Aircraft Industrial (group) CO., LTD, China

Abstract

Cutting tool wear prediction plays an important role in the machining of complex aerospace parts, and it is still a challenge under varying cutting conditions. To overcome the limitations of the existing methods in generalization ability when dealing with cutting conditions changing largely, this paper proposed a novel cutting tool wear prediction method based on continual learning. A meta-LSTM model is firstly trained for specific cutting conditions and can be easily fine-tuned with very small number of samples to adapt to new cutting conditions. Specifically, the meta-model could be continuously updated as machining data increase by using an orthogonal weights modification method. The experiment results show that the proposed method can realize accurate prediction of tool wear under different cutting conditions. Compared with existing methods including meta-learning methods, the range of adapted cutting conditions could be expanded as the task distribution of new cutting conditions is continuously learned by the prediction model.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3