Determination of process parameters for microchannel fabrication by microelectro-discharge machining

Author:

Chaides Oscar1,Ahuett-Garza Horacio1,Castro José M2

Affiliation:

1. Department of Mechanical Engineering, Tecnológico de Monterrey, Campus Monterrey, Monterrey, NL, México

2. Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH, USA

Abstract

Data for processing of micrometric geometric features via electro-discharge machining are not widely available. This article describes a methodology to produce microfeatures with a low-cost, open-architecture micro-electro-discharge machining setup using a Resistive–Capacitive oscillator as the power source. The goal of this work was to identify process condition parameter values to maintain a stable micro-electro-discharge machining process. The setup consists of a machine under development for the fabrication of two-and-a-half-dimensional microstructures on conductive materials, using 254-µm-diameter brass electrodes. Three performance parameters were defined to characterize the process: material removal rate, ratio of electrode to workpiece wear, and surface finish. Because of their relevance to the viability of the process, voltage and energy were selected as controllable parameters. The effect of controllable parameters on the mean and standard deviation of the performance parameters during machining of an A36 cold drawn steel workpiece was studied. Voltage and energy values that resulted in a stable process were identified from this exploratory study. Microchannels of 290 µm width (discharge over cut of 18 µm on lateral walls), 50 µm depth and various millimeters long were machined to test selected values. Microchannel depth was maintained constant by applying a sloped motion that compensated for electrode wear.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3