A novel minimum-time feedrate schedule method for five-axis sculpture surface machining with kinematic and geometric constraints

Author:

Li Hai1,Wang Wei1ORCID,Li Qingzhao1,Huang Pu1ORCID

Affiliation:

1. School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, China

Abstract

Currently, to satisfy the stringent requirements on the physical properties of sculptured surfaces, workpiece machining attempts to guarantee the level of machining accuracy while improving the efficiency as much as possible. Because of the characteristics of the sculptured surfaces, the machine tool is usually run at a lower feedrate to avoid large impact forces. However, this sacrifices machining time and still may not meet the requirements. This article presents a novel minimum-time feedrate schedule method to improve the machining efficiency for five-axis machining considering the surface characteristic constraints. First, the mapping relationship between the surface characteristic and the kinematical parameters is constructed by analyzing the following error on each axis. After that, the new constraint conditions on machine tool kinematics limitation and its continuity constraints are given to address changes in the curvature. Next, a new acceleration/deceleration feedrate schedule method is presented based on quintic feedrate smooth profile to minimize the impact force as much as possible. Thus, a novel minimum-time feedrate schedule based on the bidirectional feedrate schedule algorithm is proposed to improve machining efficiency while respecting various constraints. Finally, a sculptured surface with varied curvature is used to illustrate the significant reduction in processing time and improvement in surface quality in large curvature region after scheduling. The simulation and experimental results show that the proposed method can improve the machining efficiency while guaranteeing the machining accuracy.

Funder

the National Science and Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3