Ultrasonic vibration-assisted micro-hole forming on skull

Author:

Li Zhe1,Yang Daoguo2,Hao Weidong2,Wu Song2,Ye Yan1,Chen Zhidan2,Li Xiaoping1

Affiliation:

1. Department of Mechanical Engineering, National University of Singapore, Singapore

2. School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, China

Abstract

In minimally invasive neurosurgery, there is a gap between the need for a micro-burr hole to be opened on the skull to expose the enclosed brain for further operation and the proper technology available. Conventionally, a burr hole is generated by a drilling perforator, which usually causes damage to the vital soft tissue beneath skull. Besides, because of the extremely low mechanical strength of a micro-drilling bit, a micro-hole cannot be generated on the hard skull by the conventional drilling method. To bridge this gap, an ultrasonic vibration-assisted micro-burr hole forming technique has been developed in this study and its effectiveness has been proved through in vitro experiment on cat skull. With the assistance of ultrasonic vibration (29.7 kHz), a micro-hole has been successfully formed on skull with a 300 µm diameter conically tipped tool. Ultrasonic vibration of a large amplitude is found beneficial because the thrust force can be greatly reduced by increasing the vibration amplitude. Moreover, the micro-hole forming is free of cutting and chips. The ultrasonic vibration is found to have a hammering effect similar to shot peening, and a layer of dense tissue is formed around the hole and no chip is generated in the hole forming process. Besides, since the ultrasonic vibration tool can only fragment hard bone tissue without causing damage to the soft tissue beneath skull, a safe micro-hole forming technique can be enjoyed. Based on the findings from this study, a micro-burr hole perforator can be developed for the next-generation minimally invasive neurosurgery.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3