Discrete wavelet transforms analysis of vibration signals for correlating tool wear in diamond turning of additive manufactured Ti-6Al-4V alloy

Author:

Manjunath K12ORCID,Tewary Suman23,Khatri Neha12,Cheng Kai4

Affiliation:

1. CSIR-Central Scientific Instruments Organisation, Chandigarh, India

2. Academy of Scientific & Innovative Research, Ghaziabad, India

3. CSIR-National Metallurgical Laboratory, Jamshedpur, India

4. College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UK

Abstract

Ultra-precision machining (UPM) of Ti-6Al-4V alloy is widely regarded as a challenging material processing due to excessive tool wear and chemical reactivity of the tool and workpiece. Tool wear has a significant influence on the surface quality and also causes damage to the substrate. Therefore, it is critical to consider the tool condition during diamond turning, especially as precision machining moves toward intelligent systems. Consequently, there is a need for effective ways for in-process tool wear monitoring in UPM. This study aims to monitor the diamond tool wear using time-frequency-based wavelet analysis on vibrational signals acquired during the machining of Additively Manufactured (AM) Ti6Al4V alloy. The analysis employed Daubechies wavelet (db4, level 8) to establish a correlation between the Standard Deviation (SD) of the magnitude in the decomposed vibrational signal obtained from both the fresh and used tools. The analysis revealed that at a feed rate of 1 mm/min, the change in SD is 32.3% whereas at a feed rate of 5 mm/min, the change in SD is 8.4%. Furthermore, the flank wear and microfractures are observed using a scanning electron microscope on the respective flank and rake face of the diamond tool.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3