Recast layer and micro-cracks in electrical discharge machining of ultra-fine-grained aluminum

Author:

Mahdieh Mohammad Sajjad1,Mahdavinejad RamezanAli1

Affiliation:

1. School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

Aluminum alloys, due to lightweight, are widely used in aerospace and automotive industries. However, the low strength of aluminum has hindered its application. The strength of aluminum can be improved in many ways. One of them is decreasing the average grain size of metal by applying sever plastic deformation methods. Equal channel angular pressing is the most functional technique of sever plastic deformation producing ultra-fine-grained metals. Using post-process methods such as electrical discharge machining to manufacture industrial parts of ultra-fine-grained material is very conventional. The recast layer which is the consequence of electrical discharge machining process may cause undesirable influence on the surface of ultra-fine-grained aluminum. In this article, the recast layer and the heat-affected zone of electrical discharge machining of ultra-fine-grained aluminum are investigated. The thickness of recast layer, heat-affected zone and micro-cracks is observed using scanning electron microscopy and optical microscopy. In addition, the phase composition and the hardness of the recast layer and heat-affected zone are investigated by applying X-ray diffraction technique and micro-hardness test. These experiments are also repeated for the coarse-grain aluminum, and the results are compared with ultra-fine-grained aluminum. Results show that the electrical discharge machining deteriorates the surface integrity of the ultra-fine-grained aluminum rather than coarse-grain aluminum.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3