Contribution to the selection of cutting fluid type and its application technique for grinding of bearing steel

Author:

Lima de Paiva Raphael12ORCID,Souza Ruzzi Rodrigo de2ORCID,Batista da Silva Rosemar2

Affiliation:

1. School of Mechanical Engineering, Federal University of Piauí, Teresina, Piauí, Brazil

2. School of Mechanical Engineering, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil

Abstract

The elevated heat generation in grinding can develop high temperatures at the contact zone, which can adversely affect the surface integrity of the workpiece, especially when grinding hardened steels with conventional abrasives. Thus, the correct selection of cooling-lubrication condition is essential to avoid or attenuate any possible negative effect to workpiece surface integrity. However, the literature lacks work comparing different cutting fluid application technique (e.g. flood and minimum quantity lubrication – MQL) using the same fluid on both techniques. In this context, this work aims to contribute to the selection of cutting fluid type and its application technique for the grinding of bearing steel. Experimental trials were conducted comparing the use of semisynthetic and synthetic cutting fluids, both applied via conventional (flood) and MQL techniques. Different cutting conditions were also tested. A 24 full factorial design of experiment (DOE) was carried out with the following factors: fluid application technique, type of fluid, workspeed, and radial depth of cut. An analysis of main effects and interactions was performed for surface finish (Ra parameter) results, including a prediction model based on the analysis of variance (ANOVA). The morphology of ground surface and microhardness below machined surface were also analyzed. The results showed that the ground surface finish was strongly dependent on the cutting fluid type and its application technique combination: superior finishing was observed with the combination of semisynthetic fluid delivered via flood technique and with synthetic fluid delivered via MQL technique. From the surface morphology analysis, it was observed that the inferior lubrication capacity of synthetic fluid applied via flood condition deteriorated the surface finish and morphology. The surfaces ground with semisynthetic fluid provided, in general, lower values of Ra and lower microhardness variation. The prediction model for Ra showed a maximum error of 14% in comparison to the measured values.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference45 articles.

1. Application of eco-friendly nanofluids during grinding of Inconel 718 through small quantity lubrication

2. Manufacturing Processes 2

3. Introduction to Engineering Materials

4. Ashby MF, Jones DRH. Engineering Materials 2: An Introduction to Microstructures, Processing and Design. 3rd ed. Oxford, UK: Butterworth-Heinemann, 2005.

5. Grinding burn inspection

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3