Affiliation:
1. Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
Abstract
In machining freeform surfaces on five-axis machine tools, it is very important to determine the location of the cutting tool. The commercial computer aided design/manufacturing (CAD/CAM) software for five-axis machining often lacks flexibility to specify the appropriate tool orientation and toolpath for surface machining. This paper presents a new methodology for determining feasible tool orientation of a toroidal milling cutter with collision and gouging avoidance in five-axis machining of a freeform surface. To avoid collision and rear gouging, a virtual enveloping element is proposed that is derived from the properties of the local and global surfaces. The set of tool orientations can be found first by confining the cutting tool within the virtual enveloping element. Then, the principal induced normal curvatures between the freeform surface and the cutting tool need to be evaluated to offer the criterion of gouging detection. To achieve the best combination of scallop height and machining efficiency, the contact length is also calculated for various tool orientations. The toolpaths generated by the proposed method are verified through solid cutting simulation and a trial cut on a five-axis machine.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献