An intelligent method to generate liaison graphs for truss structures

Author:

Cao Hao1,Mo Rong1,Wan Neng1,Deng Qi1

Affiliation:

1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China

Abstract

Liaison graph is a necessary prerequisite of assembly sequence planning for mechanical products. Traditionally, it is generated via shape matching of joints among parts, but this strategy is invalid to truss structures because they lack patterns for shape matching. In this context, this article presents an intelligent method based on support vector machine to obtain liaison graphs of truss products automatically. This method defined three kinds of oriented bounding boxes to embody the relationships of the joints in truss structures. Based on them, a series of factors are deduced as training data for support vector machine. Furthermore, two algorithms are introduced to calculate oriented bounding boxes to facilitate the data extraction. By these processes, this method established the knowledge of joints and realized the intelligent construction of liaison graph without shape matching reasoning. To verify the effect of the method, an experimental implementation is presented. The results suggest that the proposed method could recognize most joint types and construct liaison graph automatically with sufficient sample training. The correct recognition rate is more than 85%. Comparing with back-propagation neural network, support vector machine is more accurate and stable in this case. As an alternative method, it could help the engineers to arrange the assembly plan for truss structures and other similar assemblies.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal robotic assembly sequence planning with tool integrated assembly interference matrix;Artificial Intelligence for Engineering Design, Analysis and Manufacturing;2023

2. Prediction of tool wear width size and optimization of cutting parameters in milling process using novel ANFIS-PSO method;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2020-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3