Affiliation:
1. Key Laboratory for Precision and Non-Traditional Machining Technology, Ministry of Education, Dalian University of Technology, Dalian, China
Abstract
Together with machining chatter, surface location error induced by forced vibration may also inhibit productivity and affect workpiece surface quality in milling process. Addressing these issues needs the combined consideration of stability lobes diagram and surface location error predictions. However, mode coupling and process damping are seldom taken into consideration. In this article, an extended dynamic milling model including mode coupling and process damping is first built based on classical 2-degree-of-freedom dynamic model with regeneration. Then, a second-order semi-discretization method is proposed to simultaneously predict the stability lobes diagram and surface location error by solving this extended dynamic model. The rate of convergence of the proposed method is also investigated. Finally, a series of experiments are conducted to verify the veracity of the extended dynamic model. The modal parameters including direct and cross terms are identified by impact experiments. Via experimental verification, the experimental results show a good correlation with the predicted stability lobes diagram and surface location error based on the extended dynamic model. Also, the effects of mode coupling and process damping are revealed. Mode coupling increases the whole stability region; however, process damping plays a vital role in stability improvement mainly at low spindle speeds.
Funder
National Natural Science Foundation of China
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献