Chatter stability and surface location error predictions in milling with mode coupling and process damping

Author:

Li Zhongyun1,Jiang Shanglei1,Sun Yuwen1

Affiliation:

1. Key Laboratory for Precision and Non-Traditional Machining Technology, Ministry of Education, Dalian University of Technology, Dalian, China

Abstract

Together with machining chatter, surface location error induced by forced vibration may also inhibit productivity and affect workpiece surface quality in milling process. Addressing these issues needs the combined consideration of stability lobes diagram and surface location error predictions. However, mode coupling and process damping are seldom taken into consideration. In this article, an extended dynamic milling model including mode coupling and process damping is first built based on classical 2-degree-of-freedom dynamic model with regeneration. Then, a second-order semi-discretization method is proposed to simultaneously predict the stability lobes diagram and surface location error by solving this extended dynamic model. The rate of convergence of the proposed method is also investigated. Finally, a series of experiments are conducted to verify the veracity of the extended dynamic model. The modal parameters including direct and cross terms are identified by impact experiments. Via experimental verification, the experimental results show a good correlation with the predicted stability lobes diagram and surface location error based on the extended dynamic model. Also, the effects of mode coupling and process damping are revealed. Mode coupling increases the whole stability region; however, process damping plays a vital role in stability improvement mainly at low spindle speeds.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3