Cutting performance investigation based on the variable friction model by considering sliding velocity and limiting stress

Author:

Li Xin12,Shi Zhenyu12ORCID,Duan Ningmin12,Cui Peng12,Zhang Shuai12,Zhang Xianzhi3

Affiliation:

1. Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan, P.R. China

2. School of Mechanical Engineering, Shandong University, Jinan, P.R. China

3. School of Engineering and the Environment, Kingston University, London, UK

Abstract

Fast and accurate cutting force prediction is still one of the most complex problems and challenges in the machining research community. In this study, a modified finite element model is presented to predict cutting force and cutting length in turning operations of AISI 1018. Unlike the existing research, in which the mean friction coefficient μ was taken, a variable friction coefficient μ involving the sliding velocity between chip and tool is presented in this article. The sticking–sliding friction model is adopted, and the maximum limiting stress in sticking region is calculated by considering the thermal softening and normal stress distribution. Experiments have been performed for machining AISI 1018 using tungsten carbide tool, and simulation results have been compared to experiments. The simulation results of the modified finite element model have shown better outputs in predicting cutting force, tangential force, and tool–chip contact length on the rake face. The results of this article not only are meaningful to optimize tool design and cutting parameters but also can provide a clear understanding of contact behavior between tool rake face and chip.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wear prediction of BTA drill based on finite element method for drilling laminated Inconel 625 deposited metal and FeCr alloy material;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2023-06-10

2. Numerical simulation of materials-oriented ultra-precision diamond cutting: review and outlook;International Journal of Extreme Manufacturing;2023-02-23

3. Modeling of contact stress and tool-based frictional forces considering edge effect in cutting Ti-6Al-4 V;The International Journal of Advanced Manufacturing Technology;2021-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3