Green machining for the dry milling process of stainless steel 304

Author:

Nguyen Trung-Thanh12ORCID,Mia Mozammel3,Dang Xuan-Phuong4,Le Chi-Hieu5,Packianather Michael S6

Affiliation:

1. Institute of Research and Development, Duy Tan University, Da Nang, Vietnam

2. Faculty of Mechanical Engineering, Le Quy Don Technical University, Hanoi, Vietnam

3. Department of Mechanical Engineering, Imperial College London, SW7 2AZ, London, United Kingdom

4. Faculty of Mechanical Engineering, Nha Trang University, Nha Trang, Vietnam

5. Faculty of Engineering & Science, University of Greenwich, Chatham, UK

6. School of Engineering, Cardiff University, Cardiff, UK

Abstract

Dry machining represents an eco-friendly method that reduces the environmental impacts, saves energy costs, and protects operator health. This article presents a multi-response optimization which aims to enhance the power factor and decrease the energy consumption as well as the surface roughness for the dry machining of a stainless steel 304. The cutting speed ( V), depth of cut ( a), feed rate ( f), and nose radius ( r) were the processing conditions. The outputs of the optimization are the power factor, energy consumption, and surface roughness. The relationships between inputs and outputs were established using the radial basis function models. The experimental data were normalized, with the use of the Grey relational analysis. The principal component analysis is applied to calculate the weight values of technical responses. The desirability approach is used to observe the optimal values. The results showed that the technical outputs are primarily influenced by the feed rate and cutting speed. The reductions of energy consumption and surface roughness are approximately 34.85% and 57.65%, respectively, and the power factor improves around 28.83%, compared to the initial process parameter settings. The outcomes and findings of the investigated work can be used for further research in sustainable design and manufacturing as well as directly used in the knowledge-based and expert systems for dry milling applications in industrial practices.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3