Affiliation:
1. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, P.R. China
Abstract
The evaluation of the energy performance of spindle systems with a proper metric is extremely important for energy-efficient machine tools. However, there is a lack of appropriate index to achieve this evaluation. To close this gap, the additional power requirement, which is defined as the discrepancy between the material removal power and the power gap of the spindle system from air-cutting state to cutting state, was proposed as a new indicator based on a detailed power flow analysis. The additional power requirement universally exists in machining and results from the efficiency and power losses of the system, which makes it a good energy performance indicator candidate. A theoretical model for the additional power requirement of spindle systems was built and verified in a lathe machine, through which two causes of additional power requirement were pointed: less than 100% efficiency throughout the system and efficiency change of the spindle motor under a dynamic load and a variable speed. The first cause has a positive effect on the additional power requirement, whereas the second one generally plays a negative role. Furthermore, the additional power requirement can be negative because of the negative effect, which is different from previous studies. The close relation between the additional power requirement and the energy performance of the spindle is demonstrated by an in-depth analysis. This work is an important building block for energy-efficient machine tools.
Funder
National High Technology Research and Development Program in China
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献