Multi-centric management and optimized allocation of manufacturing resource and capability in cloud manufacturing system

Author:

Lin Ting Yu1,Yang Chen2,Zhuang Changhui3,Xiao Yingying1,Tao Fei4,Shi Guoqiang1,Geng Chao5

Affiliation:

1. Beijing Simulation Center, Beijing, China

2. Department of Electrical and Computer Engineering, University of Western Ontario, London, ON, Canada

3. Sino-French Engineer School, Beihang University, Beijing, China

4. School of Automation Science and Electrical Engineering, Beihang University, Beijing, China

5. China Aerospace Science & Industry Corporation, Beijing, China

Abstract

Cloud manufacturing offers the potential to make mass manufacturing resources and capabilities more widely integrated and accessible to users through network. Most related research assumes that there exists only one management center for all manufacturing resources and capabilities in a manufacturing cloud. However, this could cause the efficiency problem (e.g. scheduling time) and harm the quality of service (e.g. response time). Actually, a large-scale manufacturing cloud should have multiple management centers to deal with massive, widely distributed manufacturing resources and capabilities and users; meanwhile, the constraint of finite manufacturing resources and capabilities and the cost of remote collaboration should be taken into consideration. Thus, this article first presents the architecture for the multi-centric management with two-level scheduling strategy combining the advantages of the centralized and decentralized decision-making. Then, after quantifying the availability and the collaborative cost of the manufacturing resources and capabilities, we propose a global optimization model for the manufacturing resources and capability allocation under the multi-centric architecture. Finally, a case study adopting our new method shows that the utilization of the manufacturing resources and capabilities would be more balanced, while the cost of the total collaboration would be reduced, compared with the typical decentralized solution. The research results can support cloud manufacturing to effectively deal with the challenge of management and allocation for increasingly large-scale and distributed manufacturing resources and capabilities.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference31 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3