Profile control processes based on contact types in silicon wafer DSP manufacturing management

Author:

Li Yangjian12ORCID,Zhu Liang12ORCID,Zhang Xuechun2ORCID,Maehara Hidenobu2,Zhang Yangyan2

Affiliation:

1. State Key Lab of Fluid Power Transmission and Control, School of Mechanical Engineering, Zhejiang University, Hangzhou, China

2. Institute of Polishing Equipment, JSG, Shaoxing, China

Abstract

To reduce the manufacturing cost of integrated circuits, the size of the silicon wafer has become larger, with the diameter increasing from 200 to 450 mm. The large diameter silicon wafer poses challenges to the manufacturing process, as its surface profile is more difficult to control and the planarization process is harder to optimize in mass production. Based on different types of contact, gap adjustment and convex pad dressing methods were proposed in this paper to control the pressure distribution on the wafer, which further influenced the wafer profile. Pressure distributions with different gap values and different pad profiles were explained with contact mechanics and verified by simulations. The simulation results show that a negative gap value and a convex pad profile contribute to the improvement of the pressure uniformity on the wafer. Both methods were then applied in the double-sided planarization (DSP) process of 300 mm silicon wafers. The results from the test run of the DSP process show that wafer flatness is improved with a negative gap value. This indicates that gap adjustment is an effective approach for wafer profile control. In the subsequent mass production of the DSP process, silicon wafers with a global flatness of 120 nm and a site flatness of 21.7 nm were obtained.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3