A modified model for estimating the contact length in surface grinding

Author:

Setti Dinesh1,Ghosh Sudarsan1,Paruchuri Venkateswara Rao1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India

Abstract

The real contact length during the grinding process is considered as an important subject for researchers, mainly because it reflects the intensity of the responses such as grinding forces and temperature generation. In order to measure and assess the real contact length, many experimental techniques and prediction models are available in the literature. Among all these models, the model developed by Rowe and Qi is being used widely by researchers because of its ability to make close predictions with real values. Rowe and Qi coined the term called roughness factor in their model. This factor varies with grinding environments and wheel–work material combinations. To decide it for a new environment, one has to do the laborious experimental work. In this article, the roughness factor has been analysed from the grinding temperature and the heat partition ratio point of view and expressed so that without experimental work prediction of the roughness factor can be done. For this, a new factor called as the thermal factor has been proposed based on the roughness factor modifications. Its good correlation with dimensionless temperature and heat partition ratio under different grinding environments have been presented and discussed in the current communication. It seems that the thermal factor can be helped in an easy and accurate prediction of the contact length during grinding operations.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictive model for cutting forces and specific cutting energy in ultrasonic-assisted grinding process: a mechanistic approach;The International Journal of Advanced Manufacturing Technology;2022-09-09

2. A research on the mechanism and model of surface micro-damage in grinding hardening;Advances in Mechanical Engineering;2021-09

3. Analysis of vibration from low-rigidity contact in belt grinding of blisk blade;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2019-04

4. Research on machining topography of point grinding based on correlation function method;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2018-02-02

5. Modelling of specific grinding energy for Inconel 718 superalloy;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2017-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3