Validation of variable helix milling instability islands

Author:

Ureña Mendieta Luis Enrique1ORCID,Ozturk Erdem2,Sims Neil D1ORCID

Affiliation:

1. Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK

2. Advanced Manufacturing Research Center with Boeing, The University of Sheffield, Sheffield, UK

Abstract

During machining, it is well-known that unstable self-excited vibrations known as regenerative chatter can limit productivity. There has been a great deal of research that has sought to understand regenerative chatter, and to avoid it through modifications to the machining process. One promising approach is the use of variable helix tools. Here, the time delay between successive tooth passes is intentionally modified, in order to improve the boundary of instability. Previous research has predicted that such tools can offer significant performance improvements whereby islands of instability occur in the stability lobe diagram. By avoiding these islands, it is possible to avoid regenerative chatter, at depths of cut that are orders of magnitude higher than for traditional tools. However, to the authors’ knowledge, these predictions have not been experimentally validated, and there is limited understanding of the parameters that can give rise to these improvements. The present study seeks to address this shortfall. A recent approach to analysing regenerative chatter stability is modified, and its numerical convergence is shown to outperform alternative methods. It is then shown that islands of instability only emerge at relatively high levels of structural damping, and that they are particularly susceptible to model convergence effects. The model predictions are validated against detailed experimental data that uses a specially designed configuration to minimise experimental error. To the authors’ knowledge, this provides the first experimentally validated study of unstable islands in variable helix milling, whilst also demonstrating the importance of structural damping and numerical convergence on the prediction accuracy.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A unified ternary-mechanism model for the calibration of cutting force coefficients and prediction of ploughing-based process damping in flank milling process;The International Journal of Advanced Manufacturing Technology;2024-03-21

2. Chatter detection in milling processes—a review on signal processing and condition classification;The International Journal of Advanced Manufacturing Technology;2023-02-07

3. Rapid stability analysis of variable pitch and helix end mills using a non-iterative multi-frequency solution;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2022-10-14

4. Editorial for the special issue on Machining Science;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2021-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3