Designing a scheduling decision support system for the skin pass line: A case study of the steel finishing line

Author:

Vaez Parinaz1,Jabbarzadeh Armin2,Azad Nader3ORCID

Affiliation:

1. School of Industrial Engineering, Isfahan University of Technology, Isfahan, Iran

2. Department of Systems Engineering, École de technologie supérieure (ÉTS), University of Quebec, Montreal, Canada

3. Faculty of Business and Information Technology, University of Ontario Institute of Technology, Oshawa, ON, Canada

Abstract

In this paper, we investigate the scheduling policies in the iron and steel industry, and in particular, we formulate and propose a solution to a complicated problem called skin pass production scheduling in this industry. The solution is to generate multiple production turns for the skin pass coils and, at the same time, determine the sequence of these turns so that productivity and product quality are maximized, while the total production scheduling cost, including the costs of tardiness, flow of material, and the changeover cost between adjacent and non-adjacent coils, is minimized. This study has been prompted by a practical problem in an international steel company in Iran. In this study, we present a new mixed integer programming model and develop a heuristic algorithm, as the commercial solvers would have difficulty in solving the problem. In our heuristic algorithm, initial solutions are obtained by a greedy constraint satisfaction algorithm, and then a local search method is developed to improve the initial solution. The experimental results tested on the data collected from the steel company show the efficiency of the proposed heuristic algorithm by solving a large-sized instance in a reasonable computation time. The average deviation between the manual method and the heuristic algorithm is 30%. Also, in all the components of the objective function, the algorithm performs better compared to the manual method. The improved values are greater than 15. In addition, we develop a commercial decision support system for the implementation of the proposed algorithm in the steel company.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3