Numerical simulation study on multi-pass non-axisymmetric spinning of cylindrical parts with oblique flange

Author:

Ye Tao1,Jia Zhen1ORCID,Han Zhi-ren1,Xu Bin2,Ji Shude1ORCID

Affiliation:

1. Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang, China

2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China

Abstract

A non-axisymmetric cylinder with an oblique flange has broad application prospects. Spinning is the main production process for this kind of workpiece. Finite element modeling is a necessary method to study some key problems that are difficult to be solved merely through experiments, such as the strain and stress fields in the development of this spinning technology. In this study, the spinning process of a non-axisymmetric oblique flange cylindrical part was established and simulated using ABAQUS/explicit software. The credibility of the simulation result was validated through an experiment. The influence of the axial roller feed along the cylinder wall on the distribution of wall thickness and stress and strain during the forming process was analyzed. The change in stress field and strain field with time was analyzed, and the quantitative relationship between forming conditions and forming results was described. Furthermore, the forming principle of the flange was analyzed. It would be beneficial for flange forming to reduce the increasing distance of the cylinder wall in the 180° direction (parameter c) and the vertical distance from the closest point to the spindle as the roller returns back in the 180° direction (parameter d), to a certain extent. Hence, a workpiece with an ideal appearance was obtained. By comparing the wall thickness distribution, the design and optimization of the roller path were once again verified to be reasonable.

Funder

natural science foundation of liaoning province

Liaoning Province Students’ Innovation and Entrepreneurship Training Program Project

Open Foundation of Key Lab of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process

department of education of liaoning province

Aviation Science Foundation, China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3